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Federal legislation has resulted in the two-tiered in vitro and in vivo screening of some 80 000
structurally diverse chemicals for possible endocrine disrupting effects. To maximize efficiency
and minimize expense, prioritization of these chemicals with respect to their estrogenic
disrupting potential prior to this time-consuming and labor-intensive screening process is
essential. Computer-based quantitative structure-activity relationship (QSAR) models, such
as those obtained using comparative molecular field analysis (CoMFA), have been demonstrated
as useful for risk assessment in this application. In general, however, CoMFA models to predict
estrogenicity have been developed from data sets with limited structural diversity. In this
study, we constructed CoMFA models based on biological data for a structurally diverse set of
compounds spanning eight chemical families. We also compared two standard alignment
schemes employed in CoMFA, namely, atom-fit and flexible field-fit, with respect to the
predictive capabilities of their respective models for structurally diverse data sets. The present
analysis indicates that flexible field-fit alignment fares better than atom-fit alignment as the
structural diversity of the data set increases. Values of log(RP), where RP ) relative potency,
predicted by the final flexible field-fit CoMFA models are in good agreement with the
corresponding experimental values. These models should be effective for predicting the
endocrine disrupting potential of existing chemicals as well as prospective and newly prepared
chemicals before they enter the environment.

Introduction
Certain man-made and naturally occurring chemicals

have been shown to bind to the estrogen receptor (ER)1

(1). As a member of the superfamily of nuclear hormone
receptors, the ER functions as a DNA transcription
factor. Activation of estrogen response elements (EREs)
by estrogen receptor homodimers leads to the synthesis
of new gene products important for most notably sexual
reproduction and differentiation (2). Unregulated ER
activation by exogenous chemicals has been shown to
disrupt the delicate endocrine balance of humans and of
other species as divergent as reptiles and fish (3). Many
of the tens of thousand of chemicals in use today require
screening for possible endocrine disrupting properties.
This number will surely continue to increase by virtue
of modern technologies such as combinatorial chemistry
(4) and high throughput screening (5) associated with
industrial drug-discovery programs (6, 7).

The classic and still standard methods for measuring
estrogenicity are based on time-consuming and labor-
intensive in vitro and/or in vivo assays which are not
suitable for routine screening of large numbers of chemi-
cals. Without a more expeditious in vitro protocol for the
analysis of endocrine disruption, methods must be de-
veloped to predict the endocrine disrupting potential of
chemicals and thus enable scientists to establish a
priority list to direct the further testing of potential
endocrine disrupting compounds (EDCs). Molecular mod-
eling has emerged as a valuable tool for the prediction
of biological activities. In particular, use of quantitative
structure-activity relationship (QSAR) models to predict
the endocrine disrupting properties of compounds will
yield significant savings in time and expense and ulti-
mately provide improved environmental protection (8, 9).

Estrogenic EDCs are structurally diverse and span a
wide range of chemical families; therefore, QSAR models
need to be equally inclusive in terms of structural
diversity. Previous CoMFA models for predicting estro-
genicity have been constructed largely from data sets
with limited structural diversity (9). One exception is the
CoMFA model developed by Waller et al. for a series of
structurally diverse estrogenic compounds (10) using the
SEAL (Steric and Electrostatic Alignment) (11) alignment
scheme. In this study, we present CoMFA models based
on a structurally diverse data set that spans eight
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chemical families (Figure 1). In addition, we explore the
influence of the size and structural diversity of the data
set on the statistical quality and predictive capability of
the resulting 3D-QSAR models, using the two most
frequently employed alignment schemes of atom-fit and
flexible field-fit. The present results for estrogenic EDCs
indicate that flexible field-fit exhibits improved perfor-
mance over atom-fit as the size and structural diversity
of the data set increase. The advantage of field-based over
atom-based alignment schemes is a logical consequence
of the known promiscuity of ER R and â. Other receptors
that share this propensity for binding ligands from
disparate chemical families, such as the human steroid
and xenobiotic receptor (SXR) (12, 13) found in humans
and its pregnane xenobiotic receptor (PXR) orthologue
found in other mammalian species (14), would be ex-
pected to follow a similar pattern in terms of their
corresponding 3D-QSAR models. Such models that can
maintain their statistical quality and predictive ability
even for structurally diverse data sets are highly desir-
able in these cases. This is particularly critical in risk
assessment scenarios where QSAR and 3D-QSAR models
are expected to predict the endocrine disrupting effects
of chemicals with virtually zero tolerance for false nega-
tives.

Experimental Procedures

Data Sets for Analysis. The data set consisted of 53
compounds from 8 structurally diverse chemical families (Figure
1). Values of the relative potency (RP) of the chemicals in the
data set were obtained from a yeast-based reporter gene assay.
The recombinant yeast cell bioassay (RCBA) utilized in this
study is a highly sensitive human estrogen receptor-based assay

the likes of which have been used previously for the detection
of xenoestrogens (15) and in various estrogen receptor studies
(16). While the RCBA yields potency values (relative to E2)
similar to literature values, the assay exhibits greater sensitivity
than other in vitro and in vivo assays. By virtue of its increased
sensitivity, the assay was able to measure detectable values of
partial agonist activity of the ER antagonists tamoxifen and
4-hydroxytamoxifen. Consequently, we decided to include both
tamoxifen and 4-hydroxytamoxifen in the data set for model
building. Another justification for inclusion of these two com-
pounds is due to the fact that the RCBAs are based on the
expression of the human ER; thus, the present 3D-QSAR models
take into account the potential estrogenic effects these com-
pounds have on humans. RP was defined as 100 times the ratio
of the concentration of 17â-estradiol (E2) giving 50% induction
in â-galactosidase activity (EC50) and the EC50 of the tested
compounds. Using this scheme, the RP of E2 equals 100 (17).
As is standard in QSAR studies, we excluded eight compounds
from the data set as these compounds showed undetectable
estrogenic activity under the assay conditions. This pruned data
set consisted of 10 steroids, 5 synthetic estrogens, 2 antiestro-
gens, 5 lactones, 6 phytoestrogens, 3 alkylphenols, 11 orga-
nochlorines, and 2 “other” chemicals not belonging to any of
these classes. We divided the data set into a training set
containing 40 compounds (Table 2) used for model development,
and a test set of 4 randomly selected compounds (Table 4) used
for model validation.

Molecular Modeling. All molecular modeling and statistical
analyses were performed on a Silicon Graphics O2 workstation
running under the IRIX 6.5 operating system using Sybyl 6.7
(Tripos, St. Louis, MO) (18). The crystal structures of the ER-
bound ligands E2 (1A52) (19) and diethylstilbestrol (3ERD) (20),
extracted from the Protein DataBank (PDB), were used as
structural templates to build the steroids and synthetic estro-
gens. Molecular structures for the remaining compounds were
constructed from the Sybyl 6.7 fragment database (18), after
which they were energy-minimized to the putative global low-
energy conformation. Using the standard Tripos molecular force
field with a distance-dependent (1/r) dielectric function, mol-
ecules were first geometry-optimized to the nearest local
minimum-energy conformation until an energy difference of
0.001 kcal/mol between successive iterations was achieved. All
rotatable (single) bonds were then systematically searched in
10° increments, and, after setting each torsion angle to its
minimum-energy conformation, the molecule was energy mini-
mized a final time. Atomic partial charges were computed using
the Gasteiger-Hückel method (21).

CoMFA Alignment. The initial and arguably the most
important step in CoMFA model development is the alignment
of molecules to a template. The compounds must be aligned to
ensure maximal superimposition of their steric and electrostatic
fields. As our data set is structurally diverse and contains
compounds belonging to several different chemical families,
there are many possible alignment schemes. In this study, we
compared two different alignment schemes, namely, atom-fit
and flexible field-fit, in terms of the statistical quality and
predictive ability of their respective CoMFA models. Both
alignment schemes used E2 as the template molecule. Using
atom-fit, which aligns a set of molecules by a rigid least-squares
fit of preselected common atoms in each molecule, and flexible
field-fit, which aligns a set of molecules by seeking each

Figure 1. Structures and basic alignment scheme of chemicals
in the training set. The first number in column 1 refers to the
total number of representatives of that particular chemical class
in the data set, while the number in parentheses refers to those
representatives that exhibited measurable biological activity
and, thus, were used for model development.

Table 1. Chemical Classes Represented in the
Respective Training Sets for CoMFA Models 1-5

CoMFA models chemical class

model 1 steroids
model 2 steroids and lactones
model 3 steroids, lactones, and phytoestrogens
model 4 steroids, lactones, phytoestrogens,

and organochlorines
model 5 all of the above chemical classes plus

two “other” compounds
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molecule’s conformation that most closely resembles the steric
and electrostatic fields of the template molecule, we aligned the
training-set compounds with respect to the 3-hydroxylphenyl
group of E2. The flexible field-fit procedure sometimes distorts
the original molecular structure, and, therefore, each compound
was reminimized after field-fitting. The alignment schemes
based on atom-fit and flexible field-fit are illustrated in Figure
2A and Figure 2B, respectively.

Calculation of CoMFA Descriptors. The calculation of
CoMFA steric and electrostatic descriptors has been described
in detail previously (8, 9). Briefly, following alignment, the
molecules were placed in a three-dimensional cubic lattice with
2 Å spacing. Steric (van der Waals) and electrostatic (Coulombic)
field descriptors were calculated for each molecule at all lattice
points using a probe represented by an sp3-hybridized carbon
atom with a +1.0 charge. The steric and electrostatic energy
values were truncated to 30 and (30 kcal/mol, respectively. The
CoMFA field descriptors were scaled using the CoMFA standard
scaling method provided in Sybyl 6.7.

Statistical Regression Methods. The biological activity for
the 40-compound training set was correlated with the CoMFA-

generated steric and electrostatic fields using the statistical
method of partial least-squares (PLS) regression (22). Using
PLS, the large number of steric-electrostatic descriptors was
reduced to a few principal components (PCs) that are linear
combinations of the original descriptors. The optimum number
of PCs was determined by the Leave-One-Out (LOO) cross-
validation procedure (23). In this method, each compound is
systematically excluded once from the training set, after which
its activity is predicted by a model derived from the remaining
compounds. Using the optimal number of PCs, the final PLS
analysis was carried out without cross-validation to generate a
predictive QSAR model with a conventional correlation coef-
ficient (23).

Results
A data set containing 53 structurally diverse com-

pounds was chosen for the present study with the goal
of analyzing the effectiveness of atom-fit and flexible field-
fit alignment schemes for model generation as the size
and structural diversity of the data set increase. Unlike
most other CoMFA models associated with ER ligands
that are based on ligand-receptor binding data, the
present models were constructed from a functional assay
whose high sensitivity was such that RP values associ-
ated with the partial agonist activity of the prototypical
antagonists tamoxifen and 4-hydroxytamoxifen were
included for model building. Values of the relative
potency (RP) for the data set of compounds were con-
verted to log(RP) values for the construction of the 3D-
QSAR models. After eliminating compounds which had
no estrogenic activity under assay conditions, the data
set was divided into a training set of 40 compounds (Table
2) and a test set of 4 randomly selected compounds (Table
4) for model validation. We applied two separate align-
ment rules for CoMFA model generation. First, we
aligned the training set using an atom-fit alignment
scheme to the 3-hydroxylphenyl group of E2 (Figure 2A).
Second, we applied a flexible field-fit alignment scheme
by aligning the 3D steric and electrostatic field energies
to the E2 template (Figure 2B).

CoMFA model 1 was developed using only the nine
steroid compounds. Although this particular data set is
admittedly sparse as compared to typical QSAR applica-
tions, it is justified in the present case as a benchmark
for assessing the impact of gradually expanding the size
and structural diversity of the data set. As all steroid
molecules embody a four-ring system (see Figure 1) which
is amenable to superimposition using either alignment
scheme, it is not surprising that the models developed
from atom-fit and flexible field-fit alignment schemes
were almost equally satisfactory insofar as their calcu-
lated statistical parameters (rcv

2 ) 0.576 vs 0.548; r2 )
0.893 vs 0.902). Indeed, both models were successful in
predicting the activity of the steroid estrone included in
the test set (Table 4). CoMFA model 2 was developed
from the same nine steroids and, in addition, the four
lactones in the training set. The rcv

2 statistical parameter
for CoMFA model 2, using either atom-fit or flexible field-
fit alignment, was diminished compared with CoMFA
model 1. Nevertheless, it is noteworthy that flexible-field
fit fared better than atom-fit and performed better in
absolute terms (rcv

2 ) 0.490 vs 0.442). This advantage of
flexible field-fit over atom-fit became more apparent as
the size and structural diversity of the training set were
gradually expanded by inclusion of 5 phytoestrogens
(model 3) and, then, by 10 organochlorines (model 4)
(Table 3).

Table 2. Comparison of Experimentally Observed and
CoMFA-Predicted Activities [log(RP)] Using Model 5,
Based on Atom-Fit and Flexible Field-Fit Alignment

Schemes for the 40 Training Set Compounds

CoMFA-predicted (model 5)

chemical name exptl atom-fit residual field-fit residual

17â-estradiol 2.00 0.79 1.21 0.91 1.09
17â-estradiol-

3(â-D-glucuronide)
-0.50 -0.60 0.10 -0.84 0.34

17â-estradiol-
3-sulfate

-2.00 -1.99 -0.01 -2.07 0.07

17R-estradiol 0.72 0.86 -0.14 0.77 -0.05
estriol -0.20 0.88 -1.08 0.62 -0.82
testosterone -3.00 -2.06 -0.94 -2.51 -0.49
androstenediol -1.64 -2.10 0.46 -2.34 0.70
dehydroepi-

androsterone
-2.74 -2.76 0.02 -2.41 -0.33

D-norgestrel -3.40 -2.98 -0.42 -3.46 0.06
17R-ethylnylstradiol 1.95 1.18 0.77 1.64 0.31
mestranol 0.86 1.34 -0.48 1.63 -0.77
diethylstilbestrol 1.87 2.37 -0.50 1.85 0.02
hexestrol 1.49 1.78 -0.29 1.37 0.12
dienestrol 1.40 1.45 -0.04 1.26 0.15
tamoxifen -2.33 -2.10 -0.23 -2.44 0.11
4-hydroxytamoxifen -2.14 -1.83 -0.31 -2.47 0.33
R-zearalenol 0.94 0.69 0.25 1.03 -0.09
â-zearalenol -1.18 -0.28 -0.90 -1.18 -0.00
R-zearalanol (zeranol) 0.11 0.28 -0.17 0.08 0.03
â-zearalanol -0.34 -0.62 0.28 -0.29 -0.05
coumestrol -0.17 -0.35 0.18 -0.04 -0.13
equol -1.07 -1.42 0.35 -0.89 -0.18
daidzein -2.89 -2.32 -0.57 -2.41 -0.48
formononetin -2.25 -2.08 -0.17 -2.23 -0.03
genistein -1.31 -1.97 0.66 -1.50 0.19
4-nonylphenol -2.66 -2.59 -0.07 -3.02 0.36
4-octylphenol -2.52 -2.52 -0.00 -2.77 0.25
4-tert-octylphenol -3.44 -2.43 -1.01 -2.93 -0.51
DDT -4.52 -4.38 -0.14 -4.27 -0.25
o,p′-DDT -3.96 -4.30 0.34 -4.17 0.21
o,p′-DDE -4.40 -3.90 -0.50 -4.03 -0.37
2,3,7,8-tetrachloro-

dibenzo-p-dioxin
-0.59 -0.49 -0.10 -0.53 -0.05

4′-chloro-4-biphenylol -1.22 -1.98 0.76 -1.53 0.31
2′-chloro-4-biphenylol -2.43 -2.50 0.07 -2.26 -0.17
2′,5′-dichloro-4-

biphenylol
-0.21 -0.78 0.57 -0.34 0.13

2′,4′,6′-trichloro-4-
biphenylol

0.00 -0.85 0.85 0.05 -0.05

2′,3′,4′,5′-tetra-
chloro-4-biphenylol

-0.09 -0.79 0.70 0.11 -0.19

3,3′,5,5′-tetrachloro-
4,4′-biphenyldiol

-1.80 -1.51 -0.29 -1.52 -0.28

bisphenol A -2.30 -2.82 0.52 -2.72 0.42
butylbenzylphthalate -3.40 -3.66 0.26 -3.50 0.10
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As the training set increased in structural diversity,
we calculated log(RP) values for additional test set
compounds. The predictive abilities of these models for
the test set proved excellent (Table 4). For example, the
log(RP) value of the organochlorine methoxychlor accord-
ing to experiment is -2.48. The corresponding values
predicted by CoMFA model 4 are -2.82 (-0.34) using
flexible field-fit and -0.91 (1.57) using atom-fit, where
the numbers in parentheses refer to the difference (i.e.,
residual) between the corresponding experimentally ob-
served and predicted values.

The final CoMFA models, constructed from the entire
training set, span eight structurally diverse chemical
classes. Scatter plots of the experimentally observed

versus CoMFA-calculated log(RP) values for the complete
training set of 40 compounds are shown for both the
atom-fit and field-fit alignment schemes (Figures 3A,B,
respectively). Comparison of statistical parameters as-
sociated with flexible field-fit alignment (rcv

2 ) 0.533; r2

) 0.960) and atom-fit alignment (rcv
2 ) 0.446; r2 ) 0.913)

reinforces the advantage of field-based alignment over
atom-based alignment for structurally diverse data sets.
The results for the test set are consistent with these
conclusions (Table 4). Whereas the largest residual log-
(RP) value using field-fit alignment is -0.33 (zearale-
none), it is -1.14 (zearalenone) using atom-fit alignment.
The residual values given in parentheses in Table 4
correspond to predictions made for compounds that are

Table 3. Summary of Statistical Parameters from CoMFA Models 1-5a

model 1 model 2 model 3 model 4 model 5

alignment: atom-fit field-fit atom-fit field-fit atom-fit field-fit atom-fit field-fit atom-fit field-fit

no. of compounds 9 9 13 13 18 18 28 28 40 40
no. of PCs 4 4 5 5 5 5 3 3 5 6
rcv

2 0.576 0.548 0.442 0.490 0.492 0.565 0.508 0.513 0.446 0.533
r2 0.893 0.902 0.904 0.944 0.868 0.933 0.920 0.895 0.913 0.960

a The size and structural diversity of the training sets increase from model 1 through model 5.

Table 4. Values of Experimentally Observed vs CoMFA-Predicted log(RP) for the Test Set Compoundsa

log(RP) for test set compounds

estrone
obs ) 0.98

zearalenone
obs ) -0.59

biochanin A
obs ) -2.04

methoxychlor
obs ) -2.48

no. of compounds pred devb pred devb pred devb pred devb

model 1 9 atom-fit 0.69 0.29 (-0.72) (0.13) (-0.07) (-1.97) (-1.43) (-1.05)
field-fit 0.47 0.51 (0.81) (-1.40) (-0.97) (1.07) (-0.39) (-2.09)

model 2 13 atom-fit 0.57 0.41 -0.48 -0.11 (0.68) (-2.72) (-1.51) (-0.97)
field-fit 0.63 0.35 0.35 -0.94 (-0.17) (-1.87) (-0.48) (-2.00)

model 3 18 atom-fit 0.65 0.33 -0.15 -0.44 -2.09 0.05 (-1.92) (-0.56)
field-fit 0.72 0.26 0.39 -0.98 -2.13 0.09 (-0.51) (-1.97)

model 4 28 atom-fit 0.22 0.76 -0.08 -0.51 -2.26 0.22 -4.02 1.54
field-fit 0.44 0.54 0.10 -0.69 -2.21 0.17 -2.14 -0.34

model 5 40 atom-fit 0.41 0.57 0.55 -1.14 -1.69 -0.35 -2.99 0.51
field-fit 0.79 0.19 -0.26 -0.33 -1.99 -0.05 -2.75 0.27

a CoMFA models 1-5, derived from training sets that gradually increase both in size and in structural diversity (see Table 3), were
constructed using both atom-fit and flexible field-fit alignment schemes. b The deviation (dev) refers to the difference between the
corresponding experimentally observed and CoMFA-predicted log(RP) value obtained from the atom-fit and flexible field-fit alignment
schemes. The values highlighted in parentheses refer to predictions made for compounds that fall outside of the chemical families comprising
the training set used to build the respective CoMFA model.

Figure 2. Orientation of training set compounds with respect to the template compound 17â-estradiol obtained by Atom-Fit alignment
(A) and Flexible Field-Fit alignment (B).
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not represented in the training set for a particular model.
For example, CoMFA model 2 constructed from steroids
and lactones performs poorly in predicting the log(RP)
of methoxychlor (residual ) -0.97). Extrapolation, or
predicting values of compounds that fall outside the
“chemical space” of a model, often leads to gross inac-
curacies and is generally unjustified. This caveat under-
scores the need for structurally diverse data sets to build
statistically robust and predictive models.

Discussion

The present study, in which data sets were systemati-
cally expanded by inclusion of structurally diverse com-
pounds spanning eight chemical families (Figure 1),
demonstrates that the choice of initial alignment strategy
is of great importance in achieving optimal 3D-QSAR
models using CoMFA. Another, albeit qualitative, ad-
vantage of field-fit over atom-fit approaches stems from
practical difficulties in achieving atom-based alignments
as the structural diversity of the data set increases. It is
intuitively obvious that the process of atom fitting
becomes more problematic as the structural diversity of
the data set increases, and especially when the data set
encompasses different chemical families. In biological
applications, this circumstance will occur for receptors
either that are inherently promiscuous with respect to
ligand selectivity or that become promiscuous upon
mutation. Prominent examples ascribing to the first
scenario are ER R and â and the steroid and xenobiotic
receptor (SXR) (12, 13). The ERs are recognized as targets
for EDCs, a large and diverse group of exogenous
compounds represented by the present data set. The
human SXR and its pregnane xenobiotic receptor (PCR)
orthologue in other mammalian species are so-called
“orphan” nuclear receptors that function as transcription
factors to mediate the metabolism of exogenous chemicals
(including drugs) by activation of the cytochrome P450
enzymes (24). A prime example following the second
scenario is the androgen receptor (25) (AR), another
nuclear receptor for which key mutations (26) (e.g.,
Thr877Ala) within the ligand binding pocket have been
associated with increased affinity for (and activation by)
a wider range of endogenous hormones besides the
receptor’s natural ligands testosterone and dihydrotest-
osterone (DHT) (27, 28). Compelling experimental find-
ings indicate that this particular mutation is associated
with the ultimate failure of androgen ablation therapies
for treatment of human prostate cancer (29, 30).

Inspection of the log(RP) values for the test-set com-
pounds obtained from our final CoMFA models (Table 4)
reveals that flexible field-fit alignment is predictive
equally well for compounds with weak potency (e.g.,
methoxychlor) as for strong potency (e.g., estrone). Of
note, both the atom-fit and flexible field-fit models
correctly predicted the low activational activity of tamox-
ifen and 4-hydroxytamoxifen (Table 2) despite their high
affinity for ER. It is worth noting that both alignments
made no “false negative” predictions. A false negative
refers to an active (e.g., estrogenic) compound that is
predicted as inactive, whereas a “false positive” refers to
an inactive compound predicted as active. False negatives
are especially problematic in risk assessment scenarios.
Unlike the inclusion of a false positive which would
ultimately be excluded with additional testing, “false
negative” compounds that are predicted not to exert
endocrine disrupting effects would receive no further
scrutiny insofar as their environmental and/or toxicologi-
cal impact.

In summary, the final CoMFA model (model 5) is based
on a structurally diverse data set and demonstrates both
internal and external predictive ability regardless of the
choice between atom-fit and field-fit alignment. Never-
theless, the present study demonstrates that field-based
alignment is generally preferred over atom-based align-
ment as the size and certainly the structural diversity
of the data set increase. This conclusion is consistent with
the CoMFA study by Waller et al. (10), who employed
the field-based SEAL alignment scheme for a series of
structural diverse estrogenic compounds. This guidance
should prove useful in developing robust 3D-QSAR
models when dealing with structurally diverse data sets.
In the present application on estrogenic compounds that
are known to span several chemical classes, CoMFA
models using field-based alignment approaches are rec-
ommended for the prioritization of chemicals as to their
endocrine disrupting effects prior to in vitro and in vivo
screening.
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